Uses of Class
libsvm.svm_node

Packages that use svm_node
featRep   
libsvm   
 

Uses of svm_node in featRep
 

Methods in featRep with parameters of type svm_node
 double FeatureRepresentation.dotProduct(svm_node[] x)
          Computes the expected dot product
 double FeatureRepresentation.dotProduct(svm_node[] x, svm_node[] y)
          Computes the expected dot product
 double FeatureRepresentation.dotProduct(svm_node[] x, svm_node[] y)
          Computes the expected dot product
private  double FeatureRepresentation.dotProductPDF(svm_node[] x)
          Computes the expected dot product based on QI-statistics
private  double FeatureRepresentation.dotProductPDF(svm_node[] x, svm_node[] y)
          Computes the expected dot product based on QI-statistics
private  double FeatureRepresentation.dotProductPDF(svm_node[] x, svm_node[] y)
          Computes the expected dot product based on QI-statistics
private  double FeatureRepresentation.dotProductUni(svm_node[] x)
          Computes the expected dot product based on the assumption that values of a generalization are distributed uniformly
private  double FeatureRepresentation.dotProductUni(svm_node[] x, svm_node[] y)
          Computes the expected dot product based on the assumption that values of a generalization are distributed uniformly
private  double FeatureRepresentation.dotProductUni(svm_node[] x, svm_node[] y)
          Computes the expected dot product based on the assumption that values of a generalization are distributed uniformly
 double FeatureRepresentation.squareDistance(svm_node[] x, svm_node[] y)
          Computes the expected square distance
 double FeatureRepresentation.squareDistance(svm_node[] x, svm_node[] y)
          Computes the expected square distance
private  double FeatureRepresentation.squareDistancePDF(svm_node[] x, svm_node[] y)
          Computes the expected square distance based on QI-statistics
private  double FeatureRepresentation.squareDistancePDF(svm_node[] x, svm_node[] y)
          Computes the expected square distance based on QI-statistics
private  double FeatureRepresentation.squareDistanceUni(svm_node[] x, svm_node[] y)
          Computes the expected square distance based on the assumption that values of a generalization are distributed uniformly
private  double FeatureRepresentation.squareDistanceUni(svm_node[] x, svm_node[] y)
          Computes the expected square distance based on the assumption that values of a generalization are distributed uniformly
 

Uses of svm_node in libsvm
 

Fields in libsvm declared as svm_node
(package private)  svm_node[][] svm_model.SV
           
private  svm_node[][] Kernel.x
           
 svm_node[][] svm_problem.x
           
 

Methods in libsvm with parameters of type svm_node
(package private) static double Kernel.dot(svm_node[] x, svm_node[] y, FeatureRepresentation fr, boolean useExpectedValues)
           
(package private) static double Kernel.dot(svm_node[] x, svm_node[] y, FeatureRepresentation fr, boolean useExpectedValues)
           
(package private) static double Kernel.k_function(svm_node[] x, svm_node[] y, svm_parameter param)
           
(package private) static double Kernel.k_function(svm_node[] x, svm_node[] y, svm_parameter param)
           
static double svm.svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates)
           
static void svm.svm_predict_values(svm_model model, svm_node[] x, double[] dec_values)
           
static double svm.svm_predict(svm_model model, svm_node[] x)
           
 

Constructors in libsvm with parameters of type svm_node
Kernel(int l, svm_node[][] x_, svm_parameter param)